ランダウ・リフシッツ 力学 §11 問題 1

ランダウ・リフシッツの力学(増補第3版) §11 問題1のメモです。

エネルギーが

\[ E = \cfrac{m l ^2 {\dot{\varphi}}^2 }{2} – m g l \cos \varphi = – m g l \cos \varphi_0 \]

運動の積分は次のようになります:

\begin{align} \cfrac{ml^2}{2} \left( \cfrac{d\varphi}{dt}\right)^2 = & mgl(\cos\varphi – \cos\varphi_0)\\ \cfrac{l}{2g} \left( \cfrac{d\varphi}{dt}\right)^2 = & (\cos\varphi – \cos\varphi_0)\\ \sqrt{\cfrac{l}{2g}} \cfrac{d\varphi}{\sqrt{\cos\varphi – \cos\varphi_0}} = & dt\\ \end{align}

ここで

\[ \cos \varphi = 1 – 2\sin^2\cfrac{\varphi}{2} \]

を使って書き直します:

\begin{align} T = & 4 \sqrt{\cfrac{l}{2g}} \int_0^{\varphi_0} \cfrac{d\varphi}{\sqrt{\cos\varphi – \cos\varphi_0}} \\ = & 4 \sqrt{\cfrac{l}{2g}} \cfrac{1}{\sqrt{2} } \int_0^{\varphi_0} \cfrac {d\varphi} {\sqrt{\sin^2 \cfrac{\varphi_0}{2} – \sin^2 \cfrac{\varphi}{2} } } \end{align}

変数を置換します:

\[ \sin\xi = \cfrac{\sin\cfrac{\varphi}{2}}{ \sin \cfrac{\varphi_0}{2}} \]

微分は次のようになります:

\[ \cfrac{\cos \cfrac{\varphi}{2}}{\sin \cfrac{\varphi_0}{2}} \cfrac{d\varphi}{2} = \cos \xi d\xi \]

積分を変形します:

\begin{align} T = & 2 \sqrt{\cfrac{l}{g}} \int_0^{\varphi_0} \cfrac{1}{\sin \cfrac{\varphi_0}{2}} \cfrac {d\varphi} {\sqrt{1 – \cfrac{\sin^2 \cfrac{\varphi}{2}}{\sin^2 \cfrac{\varphi_0}{2} } } }\\ = & 2 \sqrt{\cfrac{l}{g}} \int_0^{\varphi_0} \cfrac{1}{\sin \cfrac{\varphi_0}{2}} \cfrac {d\varphi} {\sqrt{1 – \sin^2 \xi } } \\ = & 2 \sqrt{\cfrac{l}{g}} \int_0^{\varphi_0} \cfrac{1}{\sin \cfrac{\varphi_0}{2}} \cfrac {d\varphi} { \cos \xi } \\ = & 2 \sqrt{\cfrac{l}{g}} \int_0^{\pi /2 } 2 \cfrac {\cos \xi d\xi } { \cos \xi \cos\cfrac{\varphi}{2} } \\ = & 4 \sqrt{\cfrac{l}{g}} \int_0^{\pi /2 } \cfrac { d\xi } { \sqrt{1 – \sin^2\cfrac{\varphi}{2}} } \\ = & 4 \sqrt{\cfrac{l}{g}} \int_0^{\pi /2 } \cfrac { d\xi } { \sqrt{1 – \sin^2\cfrac{\varphi_0}{2} \sin^2\xi } } \\ = & 4 \sqrt{\cfrac{l}{g}} K(\sin^2\cfrac{\varphi_0}{2}) \\ \end{align}

第1種の完全楕円積分

\[ K(k) = \int_0^{\pi /2 } \cfrac { d\xi } { \sqrt{1 – k^2 \sin^2\xi } } \]

と書きます。

\(k =\sin(\varphi_0/2) \approx \varphi_0 /2 \ll 1\)の時は

\begin{align} \left(1 – k^2 \sin^2\xi\right)^{1/2} \approx & 1 + \cfrac{1}{2} k^2\sin^2\xi + \cdots \\ = & 1 + \cfrac{1}{2} k^2 \cfrac{1-\cos2\xi}{2} + \cdots \\ \end{align}

と書くことが出来ます。

最終的に次のようになります:

\begin{align} T = 4 \sqrt{\cfrac{l}{g}} K(\sin^2\cfrac{\varphi_0}{2}) \approx & 4 \sqrt{\cfrac{l}{g}} \int_0^{\pi/2} \left( 1 + \cfrac{1}{2} k^2 \cfrac{1-\cos2\xi}{2} + \cdots \right) d\xi \\ = & 4 \cfrac{\pi}{2} \sqrt{\cfrac{l}{g}} \left( 1 + \cfrac{1}{2} \left(\cfrac{\varphi_0}{2}\right)^2 \cfrac{1}{2} + \cdots \right) \\ = & 2\pi \sqrt{\cfrac{l}{g}} \left( 1 + \cfrac{\varphi_0^2}{16} + \cdots \right) . \\ \end{align}

Adsense広告