ランダウ・リフシッツ 力学 §32 問題1 b

ランダウ・リフシッツの力学(増補第3版) §32 問題1 b のメモです。

図のようにx1,x2軸をとります。

まず慣性中心Rを求めます:

R=1μmr.

成分で書くと

X=0Y=1μ(m2h+m1×0)=1μm2h

です。

式(32.6)(または式(32.2))から計算します:

I1=I11=imiy2i=2m1(m2hμ)2+m2(hm2hμ)2=h2μ2[2m1m22+m2(2m1+m2m2)2]=h2μ2[2m1m22+4m21m2]=h2μ22m1m2(2m1+m2)=h2μ2m1m2. I2=I22=imix2i=2×m1(a2)2=m1a22. I3=imi(x2i +y2i)=I1+I2.