2018.07.24 物理学 GordiusRocker
ランダウ・リフシッツ 力学 §9 問題 1
ランダウ・リフシッツの力学(増補第3版) §9 問題 1 のメモです。 \begin{align}
M_x & = m(y \dot{z} – z \dot{y}) = m (r \sin \varphi \dot{z} – z(\dot{r} \sin \varphi + r \dot{\varphi}\cos \varphi ) ) \\
& = m (r \sin \varphi \dot{z} – z(\dot{r} \sin \varphi + r \dot{\varphi}\cos \varphi ) ) \\
& = m (r\dot{z} – z\dot{r} )\sin \varphi – m r z\dot{\varphi}\cos \varphi \\
M_y & = m(z \dot{x} – x \dot{z}) = m (z \dot{r} \cos \varphi – zr \dot{\varphi} \sin \varphi
– r\dot{z} \cos \varphi ) \\
& = m (z \dot{r} – r\dot{z} ) \cos \varphi – mrz \dot{\varphi} \sin \varphi \\
M_z & = m(x \dot{y} – y \dot{x}) = m r\cos\varphi ( \dot{r} \sin \varphi + r \dot{\varphi} \cos \varphi )
– r \sin \varphi (\dot{r} \cos \varphi – r \dot{\varphi} \sin \varphi ) \\
& = m r^2\varphi \\
M^2 & = m^2 \sin^2\varphi (r\dot{z} – z\dot{r} )^2 + m^2r^2z^2 \dot{\varphi}^2 \cos^2\varphi
– 2m^2 sin\phi \cos\phi (r\dot{z} – z\dot{r} ) r z \dot{\varphi} \\
& + m^2 \cos^2\varphi ( z\dot{r} -r\dot{z} )^2 + m^2r^2z^2 \dot{\varphi}^2 \sin^2\varphi
– 2m^2 sin\phi \cos\phi ( z\dot{r} – r\dot{z} ) r z \dot{\varphi} \\
& + m^2 r^4 \dot{\varphi}^2 \\
& = m^2 (r\dot{z} – z\dot{r} )^2 + m^2r^2z^2 \dot{\varphi}^2 + m^2 r^4 \dot{\varphi}^2 \\
& = m^2 (r\dot{z} – z\dot{r} )^2 + m^2r^2 \dot{\varphi}^2(z^2 + r^2) \\
\end{align}エリ・ランダウ,イェ・エム・リフシッツ 東京図書 1986-04
L D Landau,E. M. Lifshitz Butterworth-Heinemann 1982-01-29